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Abstract 
Linear perspective projection has served as the dominant 
imaging model in computer vision. Recent developments in 
image sensing make the perspective model highly restric- 
tive. This paper presents a general imaging model that can 
be used to represent an arbitrary imaging system. It is ob- 
served that all imaging systems perform a mapping from in- 
coming scene rays to photo-sensitive elements on the im- 
age detector: This mapping can be conveniently described 
using a set of virtual sensing elements called raxels. Rax- 
els include geometric, radiometric and optical properties. 
We present a novel calibration method that uses structured 
light patterns to extract the raxel parameters of an arbi- 
trary imaging system. Experimental results for  perspective 
as well as non-perspective imaging systems are included. 

1 Introduction 
Since the Renaissance, artists have been fascinated by the 
visual manifestations of perspective projection. Geometers 
have studied the properties of the pinhole imaging model 
and derived a large suite of projective invariants that provide 
insights into the relation between a scene and its perspective 
image. The field of optics has developed high quality imag- 
ing lenses that closely adhere to the perspective model. To- 
day, perspective projection serves as the dominant imaging 
model in computer vision and computer graphics. 

Despite its great relevance, there are several reasons that 
make the perspective model far too restrictive. In recent 
years, the notion of a “vision sensor” has taken on a much 
broader meaning. A variety of devices have been devel- 
oped that sample the light field [81 or the plenoptic func- 
tion [11 associated with a scene in interesting and useful 
non-perspective ways. Figure 1 shows some examples of 
such imaging systems that are widely used today. Figure 
l(a) shows a catadioptric sensor that uses a combination of 
lenses and mirrors. Even when such a sensor has a single 
effective viewpoint [211, its projection modo1 can include 
a variety of non-perspective distortions (barrel, pincushion, 
or more complex)[21. More interesting is the fact that cer- 
tain applications (see [221 for example) require the system to 
not have a single viewpoint but rather a locus of viewpoints 
(catacaustic [41). Similarly, wide-angle lens systems [201 
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Figure 1 : Examples of non-perspective imaging systems: (a) a 
catadioptric system, (b) a dioptric wide-angle system, (c) an imag- 
ing system made of a camera cluster, and (d) a compound camera 
made of individual sensing elements, each including a receptor and 
a lens. In all of these cases, the imaging model of the system devi- 
ates from perspective projection. 

like the one shown in Figure l(b), include severe projective 
distortions and often have a locus of viewpoints (called a di- 
acaustic). Recently, clusters of cameras, like the one shown 
in Figure l(c), have become popular [171[241. It is clear that 
such a system includes multiple viewpoints or loci of view- 
points, each one associated with one of the cameras in the 
cluster. Finally, in the case of insects, nature has evolved 
eyes that have compound lenses [71, [61, such as the one 
shown in Figure I(d). These eyes are composed of thou- 
sands of “ommatidia”, each ommatidium including a recep- 
tor and lens. It is only a matter of time before we see solid- 
state cameras with flexible imaging surfaces that include a 
large number of such ommatidia. 
In this paper we address two questions that we believe are 
fundamental to imaging: 

0 Is there an imaging model that is general enough to 
represent any arbitrary imaging system? Note that we 
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are not placing any restrictions on the properties of 
the imaging system. It could be perspective or non- 
perspective. 

0 Given an unknown imaging system (a black box), is 
there a simple calibration method that can compute 
the parameters of the imaging model? Note that for 
the types of systems we wish to subsume in our imag- 
ing model, conventional camera calibration techniques 
will not suffice. 

Such a general imaging model must be flexible enough to 
cover the wide range of devices that are of interest to us. 
Yet, it should be specific enough in terms of its parameters 
that it is useful in practice. Our approach is to exploit the 
fact that all imaging systems perform a mapping from in- 
coming scene rays to photo-sensitive elements on the image 
detector. This mapping can be conveniently described by 
a ray surjiuce which is a surface in three-dimensional space 
from which the rays are measured in various directions. The 
smallest element of our imaging model is a virtual photo- 
sensitive element that measures light in essentially a single 
direction. We refer to these virtual elements as ray pixels, 
or ruxels. It turns out that a convenient way to represent 
the ray surface on which the raxels reside is the caustic of 
the imaging system. In addition to its geometric parame- 
ters, each raxel has its own radiometric response function 
and local point spread function. 
After describing the general imaging model and its proper- 
ties, we present a simple method for finding the parameters 
of the model for any arbitrary imaging system: It is im- 
portant to note that, given the non-perspective nature of a 
general device, conventional calibration methods based on 
known scene points [251 or self-calibration techniques that 
use unknown scene points [51, [lo], [151, cannot be directly 
applied. Since we are interested in the mapping from rays to 
image points, we need a ruy-bused calibration method. We 
describe a simple and effective ray-based approach that uses 
structured light patterns. This method allows a user to ob- 
tain the geometric, radiometric, and optical parameters of an 
arbitrarily complex imaging system in a matter of minutes. 

2 General Imaging Model: Geometry 
We will consider the imaging system shown in Figure 2 
when formulating our mathematical model of the imaging 
sensors mentioned in section 1. The system includes a de- 
tector with a large number of photo-sensitive elements (pix- 
els). The detector could be an electronic chip, film, or any 
other light sensitive device. The technology used to im- 
plement it is not important. The imaging optics typically 
include several elements. Even a relatively simple optical 
component has about five individual lenses within it. In our 
arbitrary system, there may be additional optical elements 
such as mirrors, prisms, or beam-slitters. In fact, the system 
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could be comprised of multiple individual imaging systems, 
each with its own imaging optics and image detector. 

Irrespective of its specific design, the purpose of an imag- 
ing system is to map incoming rays of light from the scene 
onto pixels on the detector. Each pixel collects light energy 
from a bundle of closely packed rays in any system that has 
a non-zero aperture size. However, the bundle can be rep- 
resented by a single chief (or principle) ray when studying 
the geometric properties of the imaging system. As shown 
in Figure 2,  the system maps the ray Pi to the pixel i. The 
path that incoming ray traverses to the pixel can be arbitrar- 
ily complex. 

‘ photosensitive elements ’ 

arbitrary imaging system 

- 
captured light rays I 

Figure 2: An imaging system directs incoming light rays to its 
photo-sensitive elements (pixels). Each pixel collects light from a 
bundle of rays that pass through the finite aperture of the imaging 
system. However, we will assume there is a correspondence be- 
tween each individual detector element i and a specific ray of light 
Pi, entering the system. 

If the imaging system is perspective, all the incoming light 
rays are projected directly onto to the detector plane through 
a single point, namely, the effective pinhole of the perspec- 
tive system. This is not true in an arbitrary system. For 
instance, it is clear from Figure 2 that the captured rays do 
not meet at a single effective viewpoint. The goal of this 
section is to present a geometrical model that can represent 
such imaging systems. 

2.1 Raxels 
It is convenient to represent the mapping from scene rays 
to pixels in a form that easily lends itself to manipulation 
and analysis. We can replace our physical pixels with an ab- 
stract mathematical equivalent we refer to as a ray pixel or 
a “raxel”. A raxel is a virtual photo-sensitive element that 
measures the light energy of a compact bundle of rays which 
can be represented as a single principle incoming ray. A 
similar abstraction, the pencigraph, was proposed by Mann 



[ 161 for the perspective case. The abstract optical model of 
our virtual raxel is shown in Figure 3. Each raxel includes a 
pixel that measures light energy and imaging optics (a lens) 
that collects the bundle of rays around an incoming ray. In 
this section, we will focus on the geometric properties (lo- 
cations and orientations) of raxels. However, each raxel can 
posses its own radiometric (brightness and wavelength) re- 
sponse as well as optical (point spread) properties. These 
non-geometric properties will be discussed in subsequent 
sections. 

Figure 3: (a) A raxel is a virtual replacement for a real photo- 
sensitive element. It may be placed along the line of a principle ray 
of light entering the imaging system. In addition to location and 
orientation, a raxel may have radiometric and optical parameters. 
(b) The notation for a raxel used in this paper. 

2.2 Plenoptic Function 
What does an imaging system see? The input to the sys- 
tem is the plenoptic function [l]. The plenoptic function 
@(p, q, t ,  A) gives the intensity of light at each point p in 
space, from direction q, at an instant of time t and wave- 
length A.  We specify position by (px,  p y ,  p z )  and direction 
by two angles ( q $ ,  q e ) .  Still images represent an integration 
of light energy over a short time period, given by the ef- 
fective shutter speed. Further, each photo-sensitive element 
will average the plenoptic function across a range of wave- 
lengths. Thus, we set aside time and wavelength by consid- 
ering monochromatic still imaging. We will only consider 
the plenoptic function as a function of position and direc- 
tion: @(p, 9). 

We may view a raxel as a delta function' d,,po,qo over p, q 
space, as it measures the value of plenoptic function @(p, q) 
at (PO, 90). Hence the parameters for a raxel are just posi- 
tion p o  and direction 90 .  

2.3 Pencils of Rays and Ray Surfaces 
From where does the system (with its raxels) see the plenop- 
tic function? Each point in the image corresponds to a ray. 
Thus, the set of positions and directions determined by the 
set of rays is the part of the domain of the plenoptic function 
relevant to our system.2 

'If the raxel has a non-linear radiometric response then the response 

2The related problem of representing the positions and directions cor- 
must be linearized for the raxel to be a delta function. 

responding to a light source was explored in [ 131. 

The most general imaging system is described by a list 
of these rays. For clarity, we assume our image is two- 
d imen~ iona l .~  An image point is specified by (x,y) .  A 
scene point p imaged at (x, y) can be anywhere along the 
corresponding ray. To specify the point in space we define a 
parameter r along the ray. In the perspective case, r may be 
chosen as scene depth. 

A point p(x,  y, r )  imaged at (2, y) at depth r is imaged 
along a ray in the direction q(x, y, r ) .  Thus, we see the 
plenoptic function only from those points in the range of p 
and q. We may place a raxel anywhere along a ray.4 It will 
be more convenient for representing the model to arrange 
the raxels on a surface we call a ray surface. For example, 
consider a sphere enclosing our imaging system, as shown 
in Figure 4. For each photo-sensitive element i there is some 
point pi on the sphere that received a ray in the direction qi. 
Thus we can place our raxels on the sphere by assigning 
them the positions and directions (pi, si). It is important to 
note that there could be several rays that enter the sphere at 
the same point but with different directions (see 9 1 ,  q 2  and 
q3 in Figure 4). Thus the direction q is not, in general, a 
function of p. 

t f  

Figure 4: An imaging system may be modeled as a set of raxels 
on a sphere surrounding the imaging system. Each raxel i has a 
position pi on the sphere, and an orientation q; aligned with an 
incoming ray. Multiple raxels may be located at the same point 
(p1 = p~ = p3), but have different directions. 

The choice of intersecting the incoming rays with a refer- 

3Many of the arrays of photo-sensitive elements in the imaging devices 
described in section 1 are one or two-dimensional. Multi-camera systems 
can be represented by two-dimensional arrays parameterized by an extra 
parameter. 

41ntensities usually do not change much along a ray (particularly when 
the medium is air) provided the the displacement is small with respect to 
the total length of the ray. 
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ence sphere is arbitrary. In  191 and [141, it was suggested 
that the plenoptic function could also be restricted to a plane. 
The important thing is to choose some reference surface so 
that each incoming ray intersects this surface at only one 
point. If the incoming rays are parameterized by image co- 
ordinates (x, y), each ray will intersect a reference surface 
at one point p (x ,  y). We can write the ray surface as a func- 
tion of (2, y) as: 

We can express the position of a point along the ray as 
p(x,  y, r )  = p(z, y)+ rq(x,  y). This allows us to express 
the relevant subset of the domain of the plenoptic function 
as the range of 

In the case of an unknown imaging system we may mea- 
sure s(x, y) along some ray surface. In the case of a known 
imaging system we are able to compute s(z, y) a priori. Us- 
ing equation 2 we may express one ray surface in terms of 
another ray surface such as a sphere or a plane, 

3 Caustics 
While convenient, the choices of a plane or sphere as the 
reference surface come with their drawbacks. The direction 
q(z, y) of a raxel need not have any relation to the position 
p(z ,  y) on a general reference surface. There may be points 
on the surface that do not have incoming rays. At other 
points, several rays may pass through the same point. 

For many imaging systems, there is a distinguished ray sur- 
face which is defined solely by the geometry of the rays. In 
Figure 5, we see the envelope of the incoming rays form a 
curve. On such surfaces, direction q is really a function of 
position p, and the incomming rays are tangent to the sur- 
face. This is a special case of a ray surface called a caustic. 
We argue that caustics are the logical place to locate our 
raxels. 

Caustics have a number of different characterizations. The 
caustic often forms a surface to which all incoming rays are 
tangent. This does not happen in the perspective case, where 
the caustic is a point. Caustics can also be viewed as geo- 
metrical entities where there occurs a singularity (bunching) 
of the light rays. As a result, a caustic formed by rays of illu- 
mination generates a very bright region when i t  intersects a 
~ u r f a c e . ~  In our context of imaging systems, a caustic is the 
locus of points where incoming rays most converge. Points 
on the caustic can therefore be viewed as the ‘locus of view- 
points” of the system. It is thus a natural place to locate the 
raxels of our abstract imaging model. 

’For example, when light refracts through shallow water of a pool, 
bnght curves can be seen where the caustics intersect the bottom 

Figure 5: The caustic is a good candidate for the ray surface of 
an imaging system as it is closely related to the geometry of the 
incoming rays; the incoming ray directions are tangent to the caus- 
tic. 

3.1 Definition of a Caustic Surface 

In section 2.3, we described the set of points and direc- 
tions that can be detected by the imaging system. This set 
is described by the range of C ( x ,  y, r )  from equation (2). 
The position component functions are 9 = p x ( z , y , ~ ) ,  
Y = p y ( x , y , r ) ,  and 2 = p z ( z , y , r ) .  The map from 
(x, y, r )  to (A-, Y, 2) can be viewed as a change of coor- 
dinates. The caustic surface is defined as the locus of points 
in A-, Y, 2 space where this change of coordinates is singu- 
1 ar. 

3.2 Computing Caustics 

The ray-to-image mapping of an imaging system may be 
obtained in two ways. One way, is to derive the mapping or 
compute i t  numerically from optical components or parame- 
ters of an imaging system which is known a-priori. Alterna- 
tively, a calibration method can be used to obtain a discrete 
form of the mapping (see section 5). In either case, our goal 
is to compute the caustic surface from the given mapping. 

When this mapping is known in closed form, analytic meth- 
ods can be used to derive the caustic surface [41. When a 
discrete approximation is given, a host of numerical meth- 
ods [121, [IS], [261, may be used. The method we use com- 
putes the caustic by finding all the points where the change 
in coordinates described above is singular [21, [31. 

Equation (2) expresses C in terms of a known or measured 
ray surface s ( x ,  y). The caustic is defined as the singular- 
ities in  the change from (x, y, T )  coordinates to (S, Y, 2) 
coordinates given by p. Singularities arise at those points 
(A‘, l’, 2)  where the Jacobian matrix J of the transforma- 
tion does not have full rank. We can find these points by 
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computing the determinant of the Jacobian, 

and setting it to zero. Since this is quadratic in T we can 
solve for r explicitly in terms of p, q, and their first deriva- 
tives with respect to z and y. Plugging this back into C 
gives us an expression for the caustic ray surface parame- 
terized by (x, y) as in equation (1). If the optical system 
has translational or rotational symmetry then we may only 
consider one parameter, for example 2, in the image plane. 
In this case Jacobian becomes linear in T and the solution 
simplifies to: 

(4) 

3.3 Field of View 
Some parameters used to specify the general perspective 
camera model are derived from the ray surface representa- 
tion in our general imaging model. Other parameters de- 
pend on the perspective assumption and are ill defined in 
our model. For example, field of view presents an ambigu- 
ity, since in the non-perspective case the rays may no longer 
form a simple rectangular cone. One candidate for a field 
of view is the range of q(x, y) over the image. This is the 
same as the Gauss map [ l  11. The Gauss map is a good ap- 
proximation to the field of view when the scene points are 
distant relative to the size of the imaging system. 
Other geometric parameters of a perspective imaging sys- 
tem, such as aspect ratio, and spherical aberration [251, may 
no longer be separable in the general imaging model from 
the parameterized ray surface. 

4 Non-Geometric Raxel Parameters 
Each raxel is treated as a very narrow field of view, perspec- 
tive imaging system. Many of the conventional parameters 
associated with a perspective or near-perspective systems 
may be attributed to a raxel. 

4.1 Local Focal Length and Point Spread 
An arbitrary imaging system cannot be expected to have 
a single global focal length. However, each raxel may be 
modeled to have its own focal length. We can compute each 
raxel's focal length by measuring its point spread function 
for several depths. A flexible approach models the point 
spread as an elliptical Gaussian. Each ellipse has a major 

fb, as well as a focal orientation 1c, in the image. 

4.2 Radiometry 
The radiometric response, g ,  is expected to be smooth 
and monotonic and can be modeled a polynomial [191. If 
one can compute the radiometric response function of each 
raxel, one can linearize the response with respect to scene 
radiance, assuming the response is invertible. 

We model the relation between raxel irradiance E as scene 
radiance L times a spatially varying attenuation factor, 
h ( z ,  y), corresponding to the image point (2, y). We call 
h(x, y) the full-offfunction. This factor takes into account 
the finite size of the aperture and vignetting effects which 
are linear in L .  

4.3 Complete Imaging Model 
The general imaging model consists of a set of raxels pa- 
rameterized by x and y in pixel coordinates. The parameters 
associated with these raxels (see Figure 6), are (a) position 
and direction, that describe the ray surface of the caustic, 
(b) major and minor focal lengths as well as a focal orien- 
tation, (c) a radiometric response function, and (d) a fall-off 
constant for each pixel. 

Figure 6: Each raxel has the above parameters of image coor- 
dinates, position and direction in space, major and minor focal 
lengths, focal orientation, radiometric response, and fall-off fac- 
tor. These parameters are measured with respect to a coordinate 
frame fixed to the imaging system. 

Camera parameters are separated into external and internal 
parameters. The external parameters are specified by a co- 
ordinate frame. The internal parameters (Figure 6) are spec- 
ified with respect to that coordinate frame. In particular, for 
each raxel i, the parameters pi, qi are measured with respect 
to a single coordinate frame fixed to the imaging system. If 
the system is rotated or translated, these parameters will not 
change but the coordinate frame will. 

In the case of perspective projection, the essential [51 or 
fundamental [ 101 matrix provides the relationship between 
points in one image and lines in another image (of the same 
scene). In the general imaging model, this correspondence 
need no longer be projective. Nevertheless, a point in one 
image still corresponds to a curve in the other, which may 
be computed. 

5 Finding the Model Parameters and minor axis. The major axis makes an angle 1c, with the 
x-axis in the image.6 Each raxel has two focal lengths, f a ,  

hThe angle $ is only defined if the major and minor axis have different In section we described how to compute Our model for a 
known optical system. In contrast, our goal in this section lengths. 

112 



Figure 7: (a) A ray corresponding to a pixel i intersects two 
planes, separated by a known distance Az, at points pn and pf .  If 
these positions are known, the direction of the ray qf may be deter- 
mined for each pixel. From this we compute the raxel parameters. 
To determine from the image the positions of pn and pf we place 
an active display at the planes and use binary coding patterns. By 
rotating the image device we may perform ray-based calibration 
for imaging systems with an arbitrary field of view. (b) One of the 
binary patterns used for ray-based calibration. 

is to find the parameters for an unknown (black box) imag- 
ing system. Now, we construct a calibration environment 
where the geometric and radiometric parameters can be effi- 
ciently estimated. The geometric parameters are determined 
by establishing the image point to scene ray correspondence 
or ray based calibration.' We can find the radiometric re- 
sponse function and the fall-off by controlling the intensity 
of light along the rays and measuring the response in the 
image. 

Suppose we could determine the direction qf and position 
pf of each point on a plane imaged at i (Figure 7(a)). This 
determines a ray surface for the imaging system. From this 
we compute the caustic ray surface and thus the raxel pa- 
rameters for each point in the image. We may determine the 
direction q j  on the plane by finding a point pn, also im- 
aged by i, at a second plane translated a known distance AZ 
toward the imaging device. 

To determine the position on a plane imaged at i we place 
an active display at the plane. If a display has N locations, 
we can make each point distinct in logN images using sim- 
ple grey coding or bit coding. A million pixel display re- 
quires only twenty images to encode every point. This two 
plane method solves the ray based calibration problem for 
a limited field of view or a rotationally symmetric system. 
We may calibrate the remaining imaging systems by placing 
them on a turntable and rotating the coordinate frame of the 
imaging system. 

We display a linearly increasing constant brightness se- 
quence to our imaging system. First, we calibrate the ra- 
diometric response function for a representative point in the 

'It is important to note that, given the non-perspective nature of a gen- 
eral device, conventional calibration [51, [IO], [ 151, [251. cannot be applied 
here. 

image from the known input brightness. We may then com- 
pute the fall-off function across all the points. 

We used twenty binary coded images for each plane for ray 
based calibration (assuming a one megapixel display). We 
compute both the radiometric response function and the fall- 
off from seventeen uniform brightness levels. Thus, with 
roughly 60 images we have measured the parameters of our 
general imaging model, with the exception of point spread. 
To make those 60 images robust to noise each image was an 
average of 30 images of the same display input. 

5.1 Experimental Apparatus 
We calibrated two imaging systems to demonstrate the gen- 
erality of our method. One imaging system was a non- 
perspective catadioptric system consisting of a perspective 
camera and a parabolic mirror [231. The second imaging 
system was a perspective camera. In both experiments the 
camera was a Cannon Optura digital video camera. Bit 
patterns were displayed on a laptop with a 14.5 inch LCD 
screen with resolution 1024 x 768 pixels. Rather than move 
the display, the camera was mounted on a stage which was 
translated 60" in the direction normal to the screen. 

In Figure 8(a) the parabolic catadioptric system is shown.* 
The laptop was oriented so as to give the maximum screen 
resolution along the axis of symmetry. Figure 8(b) shows a 
sample binary pattern as seen from the parabolic catadiop- 
tric system. The perspective imaging system, consisting of 
just the camera itself, can be seen in Figure 1 l(a). Figure 
1 l(b) shows an image of a pattern of vertical bars from the 
perspective camera. 

5.2 Experimental Results: Geometric Parameters 
Figure 9 shows the recovery of the caustic for the non- 
perspective catadioptric system using ray based calibration. 
Since the system is rotationally symmetric, the image to ray 
map was recovered along a radius. The caustic was com- 
puted using equation (4). Since there is no data along the 
axis of symmetry, its position was estimated. The caustic of 
the system should have a cross section similar to the curve 
shown in Figure 5 (see [231 for details). The recovered caus- 
tic matches that part of the curve near the cusp. We only see 
this part of the caustic because the outer field of view of 
the imaging system ends where the rays are nearly normal 
to the mirror's axis of symmetry. Near the axis of symme- 
try the radial partial derivative increases faster. This means 
that near the axis, smaller changes in position on the caus- 
tic yield larger changes in angle. Thus, there is a drop in 
resolution near the axis of symmetry. 

We solved for the zeros of the three dimensional Jacobian 
of equation 3 to recover the caustic scatter plot as seen in 

. 

'The parabolic mirror had an outer diameter of 100" and an inner 
diameter of 3mm. The focus of the parabola was 25" from the base. 
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Figure 12. Since the caustic of a perspective camera is the 0. D. Faugeras. What can be seen in three dimensions with 
center of projection, the point-like measured caustic agrees an uncalibrated stereo rig? In Proc. ECCV, pages 563-578, 
with expectation. 1992. 

N. Franceschini, J. M. Pichon, and C. Blanes. From insect vi- 
5.3 Experimental Results: Non-Geometric Pa- sion to robot vision. Philosophical Transactions of the Royal 

Society London: Biological Sciences (Series B) ,  337:283- 

I51 

[61 

rameters 
Figure 1 O(a) shows the normalized radiometric response 
function. As is the case with higher quality digital imag- 
ing devices, the response is close to linear over much of its 
dynamic range. The curve shown is a polynomial fit with 
the non-linear constraint that the curve must have a positive 
derivative. 

We linearized the response and calculated the radiometric 
fall-off for the non-perspective case (Figure 10 (b)). The 
fall-off is normalized so the maximum is unity. The direc- 
tionality of the LCD irradiance has be measured and nor- 
malized to be uniform with respect to direction. The pro- 
nounced fall-off away from the axis of symmetry is due to 
the higher resolution of non-perspective system there. Im- 
age pixels away from the axis of symmetry see a smaller 
object area. Hence, they gather less light from a uniform 
radiator. 

For the perspective system, we might expect a cos4 cy type 
fall-off [ I  11. However, many lens systems have been de- 
signed to remove this effect. Indeed, we find no significant 
fall-off as the function is nearly constant. This can be seen in 
Figure 13(a) where intensity represents the fall-off function. 
The near constancy of the fall-off is clearer in the graph of a 
radial slice 13(b). To conclude, this simple calibration pro- 
cedure allows us to compute the parameters of our general 
and flexible model. 
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Figure 8: (a) A non-perspective imaging system and a 

perspective catadioptric system consists Of a perspective camera a 
parabolic mirror. The imaging system is mounted on the translat- 
ing stage. The laptop displays 26 patterns. (b) A sample bit pattem 
as seen through the parabolic catadioptric system. 

Figure 1 1 : (a) A perspective imaging system and a calibration 

of perspective camera is normal to the plane of the screen. (b) A 
sample bit pattem as seen through the perspective system. 

system, consisting Of a laptop and a stage. The non- system, consisting of a laptop and a translating stage. The axis 
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Figure 9: The caustic recovered for a parabolic catadioptnc sys- 
tem A cross Section Of the Of the system I s  slm'lar to the 
central part of the curve in Figure 5 

Figure 12: The perspective caustic is a small cluster of points cor- 
responding to the center of projection The scale is approximately 
the same as Figure 9 for companson 

Figure 10: (a) The normalized radiometric response is calculated 
from images of 17 uniform screens. The curve is a polynomial fit 
with the endpoints constrained and the first derivative required to 
be positive. (b) The radial fall-off function of the parabolic cata- 
dioptric system. The plot goes from the edge toward the center of 
the system. 
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Figure 13: (a) The perspective two dimensional fall-off function 
as an image. (b) A plot of the radial fall-off function for the per- 
spective system. The plot goes from the edge to the center of the 
image since it is symmetric. 
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